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Abstract. The dynamics of a non-planar vortex in a two-dimensional easy-plane ferromagnet of finite size
is studied. Spin dynamics simulations show small cycloidal oscillations of the vortex around its mean path.
In contrast to an earlier phenomenological theory we give a physical explanation: The oscillations occur due
to the interaction of the vortex with coherent spin waves which are excited by this vortex at the moment
when it starts to move, in order to conserve the total energy and angular momentum. The calculation of
these quantities yields the frequencies and amplitudes of the cycloidal oscillations in good agreement with
the simulation data.

PACS. 75.10.Hk Classical spin models – 05.45.Yv Solitons – 75.40.Mg Numerical simulation studies

1 Introduction

During the past years much attention has been given to
the investigation of the structure and dynamics of vor-
tices in magnetic materials of different types [1–17]. These
nonlinear topological excitations play an active role in
resonance properties of magnets and in the thermody-
namics of the Kosterlitz-Thouless vortex-unbinding tran-
sition in 2D and quasi-2D magnetic systems (such as mag-
netic lipid layers, organic intercalated compounds (e.g.
(CH)n(NH3)2CuCl4) and layered magnets), they are also
important for the problem of the Bloch lines in domain
walls. Recently the direct experimental visualization of
magnetic vortices in magnetic nanodots by magnetic force
and Lorentz microscopies measurements [18–20] gave a
new impulse to the investigations in this field of the
physics of magnetism. Intensive experimental study of ar-
tificial 2D lattices of magnetic nanodots in vortex config-
urations [21] leads to potential applications of these ob-
jects in magnetic memory devices. Now even a delicate
phenomenon like a shift of the vortex position from the
center of a nanodot in an external magnetic field is ob-
served experimentally [20,22]. However, many particular
features of vortex dynamics may be studied now only by
analytical methods or numerical simulations.

The dynamics of vortices is quite different in ferro-
and antiferromagnets and depends essentially on the type
and value of the magnetic anisotropy. From the theoret-
ical point of view, the situation in easy-plane ferromag-
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nets with small exchange or single-ion anisotropy seems
to be most interesting, because in this case Galilei’s law
is not valid for a vortex and therefore it exhibits a non-
Newtonian dynamics. The structure of this magnetic vor-
tex is in a certain sense similar to that of vortices in a
nonideal Bose gas described by Pitaevskii [23] and its dy-
namics is similar in first approximation to the dynamics of
vortices in superfluids. Such a nontrivial dynamics takes
place only if the anisotropy is smaller than some critical
value and the vortex has a so-called out-of-plane (OP)
structure with nonzero components of the magnetization
in the hard-axis direction. For this vortex the so-called
gyrovector which was defined by Thiele in [1,2] is nonzero
and a first-order equation of motion for the vortex center
can be derived [3], similar to the Thiele equation for mag-
netic bubbles and Bloch lines in easy-axis ferromagnets.
In an infinite medium without gradients of the magne-
tization field such an isolated vortex cannot move [5]. A
motion is possible only in the presence of a spatial rotation
of spins in the easy plane (spin flux) [5]. This is similar
to the situation in hydrodynamics, where a vortex in a
nondissipative medium can move only with the velocity of
the medium, i.e. it is “frozen” in the liquid.

In the real situation of a magnet with a finite den-
sity of vortices and other magnetic excitations (such
as spin waves, for example) and in a confined geome-
try magnetic vortices can move. In the hydrodynamic
approach the interaction with other vortices and the
boundaries is simple and leads to vortex motion with
average velocity V ∼ 1/

√
n, where n is the density of vor-

tices. In a finite ferromagnet with a characteristic size L,
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a single vortex is subject to Coulomb image forces due
to the boundaries; here the above mentioned Thiele equa-
tion yields a gyrotropic motion with a small frequency (of
order 1/L2) [14,15].

But the simulations showed that the real dynamics of
an OP-vortex is much more complicated [8–10,14,15]: the
motion of two interacting vortices is accompanied by small
fast oscillations [8] and even the simple gyrotropic rota-
tion of a single vortex in a finite system is accompanied
by an additional cycloidal motion with higher frequen-
cies (∼1/L) [14,15]. There exist two reasons for this un-
usual dynamics: the kinematic properties of vortices be-
yond the hydrodynamic approach and an interaction with
spin waves. The characteristic velocities and frequencies
of the additional motion of a vortex in the last case are
connected with the frequencies and amplitudes of certain
spin wave modes (below), which are excited in the system.
The excitation of spin waves by a vortex in a nonstationary
process and the further interaction with them are inter-
esting from the experimental point of view and may be
observed in processes of switching on and switching off an
external magnetic field.

In previous articles [9,10,14–16] a new collective vari-
able approach to the nonlinear vortex dynamics was de-
veloped for a description of this complicated motion and
higher-order generalizations of the Thiele equation were
obtained by an improved travelling wave ansatz for the
vortex solution. This approach took into account only the
own kinematic properties of the vortex (as, for example,
its finite mass in the presence of a border or another vor-
tex). In the simple case of the gyrotropic rotation of a
vortex in a finite system with size L, the solution of the
derived 3rd-order equation of motion gave a good quanti-
tative description of the simulation data for small radii R
of rotation (R � L) [15]. But this agreement was worse for
a motion with larger radii R, moreover even for small ra-
dius the results for the effective vortex mass from numer-
ical simulation and analytical calculation were different.
On the other hand an explanation in terms of interaction
with spin waves was not evident as in the simulations all
the characteristics of the cycloidal oscillations depended
on the parameters L and R in a regular manner while
the spin waves due to their linear nature can have arbi-
trary amplitudes. So the physical origin of the observed
oscillations was not clear.

In this article we propose a physical explanation of this
phenomenon which gives the possibility to describe with
good accuracy all the results observed in the simulations
for all values of the parameters R and L. We prove that the
interaction with a coherent spin wave is the main reason
of the cycloidal oscillations of the vortex.

The main idea of this explanation is the following: at
the initial moment when the vortex starts to move it emits
a coherent spin wave in order to conserve the total en-
ergy and total angular momentum. The amplitude of this
coherent wave strongly depends on the initial conditions
and in particular on the initial position of the vortex in
the system. Later the vortex oscillates in the field of this
wave. We investigate analytically such a motion and show

that a comparison of the results of our analytical calcula-
tions with the simulation data qualitatively confirms this
scenario.

In Section 2 we formulate the model and briefly review
the main results for the structure of a magnetic OP-vortex.
In Section 3 we list and analyse the data from the nu-
merical simulations, and finally in Section 4 we give the
theoretical explanation of these data.

2 Model system

Let us consider a classical 2D Heisenberg ferromagnet with
easy-plane exchange anisotropy with the Hamiltonian

H = −J
∑

(n,m)

(Sx
nSx

m + Sy
nSy

m + (1 − δ)Sz
nSz

m) , (1)

where J is the coupling constant (J > 0 for ferromagnets),
δ is the anisotropy parameter (0 < δ ≤ 1 for easy-plane
symmetry) and the summation is taken over the nearest-
neighbor sites of a square-lattice. We treat the spin S as
a classical vector and set later |S| = J = 1.

In the continuum approximation the Hamiltonian (1)
can be rewritten as

H =
1
2

∫
dv

[ (
1 − δ

(
1 − m2

)) (∇m)2

1 − m2

+
(
1 − m2

)
(∇Φ)2 + 4δm2

]
, (2)

where m = Sz and Φ = arctan(Sy/Sx).
The dynamic equations for this Hamiltonian

read [6,24]

∂Φ

∂t
= m

[
4δ − (∇Φ)2

]− [ 1
1 − m2

− δ

]
∆m

− m(∇m)2

(1 − m2)2
, (3)

∂m

∂t
=
(
1 − m2

)
∆Φ − 2m∇m∇Φ. (4)

The small amplitude solutions of (3, 4) describe linear
spin waves with a dispersion relation

ω = ck
(
1 + r2

vk2
)1/2

, (5)

where k is the modulus of the magnon wavevector, c is
the magnon velocity and rv is a characteristic spatial scale
(“magnetic length”):

c =
√

4δ, rv =

√
1 − δ

4δ
� 1

c
for δ � 1. (6)

In the long-wave approximation (∂/∂r � 1/rv) the
linearized equations (3, 4) reduce to a wave equation for Φ
and a connection between the fields Φ and m:

∆Φ − 1
c2

∂2Φ

∂t2
= 0, (7)

m =
1
c2

∂Φ

∂t
· (8)
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The simplest nontrivial topological solution of (3, 4)
corresponds to a static in-plane (IP) vortex with m ≡ 0
and

Φ = q arctan((y − Y )/(x − X)) , (9)

where q = ±1,±2, ... is a topological charge of the vortex
and (X, Y ) are the coordinates of its center. But as shown
in [6,17] the IP-vortex is stable only if the anisotropy is
larger than some critical value δc (for the square lattice,
δc � 0.297). In the domain δ < δc the IP-vortex is unsta-
ble, instead there exists an OP-vortex with a bell-shaped
structure of the z-components of the magnetization m.
The Φ-field of an OP-vortex in an infinite system has the
same form (9) as for the IP-vortex. The spatial distribu-
tion of the m-components in the OP-vortex was obtained
in [4–6] and has the following asymptotic form near the
vortex center and for large distance r from it:

m = p

[
1 − a

(
r

rv

)2
]

, r → 0, (10)

m = pb

√
rv

r
e−r/rv , r 	 rv, (11)

where p = m(r = 0) = ±1 characterizes the “polariza-
tion” of the vortex; a, b are numerical factors of the order
of one, and the above-mentioned magnetic length rv can
be interpreted as the radius of the vortex core. Below we
always consider a vortex with p = q = 1.

The solution (9–11) is modified when the vortex mo-
tion or a finite size of the system is taken into account.
For an infinite ferromagnet the deformation of the vortex
due to its motion was calculated in [5,6]. For a solution of
the form S = S(r − R), where R = Vt is the position of
the vortex center, and for small velocity (V � c), the de-
formations in the core are small: δm ∼ (V/c)(r/rv)3, δΦ ∼
(V/c)(r/rv). Outside the core the changes of the azimuthal
field are exponentially small (δΦ ∼ V

c ( rv

r )3/2 exp(−r/rv))
and only the m-components change essentially: it follows
from (8) that

δm � V

c

rv

|r− R| |nr × nv|, (12)

where nr and nv are the unit vectors in the (r − R)
direction and in the direction of motion, resp.

In a finite system with a vortex situated far from the
boundary, the boundary conditions lead first of all to a
modification of the Φ-field. The most interesting geome-
try for us is a circular system (with radius L) and free
boundaries (von Neumann boundary conditions); in such
a system the solution (9) is modified in the following way

Φ = arctan
y − Y

x − X
− arctan

y − Y

x − X
+ arctan

Y

X
· (13)

The second term corresponds to the effective field of
an image antivortex at the point X = XL2/R2 , Y =
Y L2/R2 with R =

√
X2 + Y 2. An arbitrary constant can

be added to the expression (13), but it is important that

the last term in (13) conserves its form for a circular mo-
tion of a vortex with X = R cosω0t, Y = R sin ω0t ([14]).
For a fixed boundary (Dirichlet condition) we must take
an image vortex instead of an antivortex and change the
sign of the second term in (13).

Using the travelling wave ansatz S = S(r − R(t)) and
the Landau-Lifshitz equation

dS
dt

= −S× ∂H

∂S
, (14)

it is easy to derive an effective equation of motion for the
vortex center R (analogous to the Thiele equation) [1,3]:

dR
dt

× G = F, (15)

where the gyrovector G = 2πpqnz in our case with
positive vorticity and polarization is equal to 2πnz and
F = −∂E/∂R represents an external force acting on the
vortex (where E is the energy of the system). In the case
of a circular system, F is the 2D Coulomb force from the
image vortex.

In [5] another form of (15) was proposed:

∂R
∂t

= pq (∇Φex)r=R , (16)

where Φex is a slowly varying external Φ-field at the vor-
tex center. From the solution (13) with the “external”
field Φ = −arctan((y − Ȳ )/(x − X̄)) and from (16) follow
the expressions for velocity V and frequency ω0 of a pure
azimuthal rotation of the vortex

V =
R

L2 − R2
, ω0 =

1
L2 − R2

· (17)

The vortex rotates counter-clockwise (CCW) in the
case of free boundary conditions and clockwise (CW) for
fixed boundaries.

It follows from (17) that the gyrotropic velocity V of
a vortex would diverge at the boundary (for R → L). But
a more accurate calculation (see the end of Appendix A)
shows that the formula (17) is modified in the narrow
vicinity of the boundary and can be approximately rewrit-
ten as

V � R

L2 − R2 + rvL
· (18)

This velocity tends to the spin wave velocity c in the
limit R → L.

The result (17) can also be obtained from equa-
tion (15). It follows from the expression for the energy
of a vortex with small velocity and not too close to the
boundary (L − R > rv) that (see Appendix A)

E = E0 + π ln
L2 − R2

rvL
, (19)

where the energy of the vortex core E0 � 1.
The analytical results (17) obtained from the Thiele

equation are in good agreement with the data of numer-
ical simulation ω0 � 1/L2 for small radii R of the gy-
rotropic rotation. But the first-order equations (15, 16)
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can describe only the motion with one frequency – the
pure gyrotropic rotation.

That is why in [8,10] a generalized travelling wave
ansatz S = S(r − R(t), dR/dt) was proposed for the
description of the complicated vortex motion. But this
ansatz is not valid for a finite system. (See, for exam-
ple, (13).) Therefore we discuss a further modification of
the ansatz [9], namely S=S(r,R(t), dR/dt), which leads
to the following generalization of equation (15):

M̂
d2R
dt2

+
dR
dt

× G = F, (20)

where the mass tensor M̂ has the components

Mij =
∫

dv

(
∂Φ

∂Xi

∂m

∂Ẋj

− ∂Φ

∂Ẋj

∂m

∂Xi

)
(21)

with Xi = (X, Y ) and Ẋi = (dX/dt, dY/dt). The mass
tensor M̂ is an anisotropic nonlocal complicated charac-
teristic of the vortex and depends strongly on the size and
geometry of the system. But for a circular system and
small distance of the vortex from its center (R/L � 1)
the tensor M̂ is isotropic (Mxx = Myy = M) and has the
simple form (see Appendix A):

M = M0 + πr2
v ln

L

rv
, (22)

where M0 ∼ πr2
v is the mass of the vortex core.

Although M is a nonlocal quantity, in some sense it
plays for a vortex the role of a usual particle mass. For
example, the dependences of the field momentum and the
energy of the vortex on its velocity in the limit R/L � 1
have the forms [10]:

P = MV, E � Mc2 +
MV 2

2
· (23)

The second order equation (20) permits the existence
of more complicated solutions with rapid cycloidal oscil-
lations with the frequency ωc = G/M , additional to the
slow gyrotropic rotation. Such a type of vortex motion was
observed in early numerical simulations [8,9], but these cy-
cloidal oscillations had a frequency in the order of 1/L. So
from the above relation it follows that the mass M = G/ωc

must show a linear dependence on the system size L, in
contrast to the predicted logarithmic dependence (22).

Later [14,15], more precise simulations showed a split-
ting of the frequency of the cycloidal oscillation into a
doublet ω1,2 with splitting ∆ω � 4/L2 and mean value
ω̄ � 2/(rvL). In order to explain this observation of
three different frequencies the generalized ansatz S = S(r,
R, dR/dt, d2R/dt2) was made in [15] which yields the
3rd-order equation

Â
d3R
dt3

+ M̂
d2R
dt2

− G× dR
dt

= F, (24)

with

Aij =
∫

dv

(
∂Φ

∂Xi

∂m

∂Ẍj

− ∂Φ

∂Ẍj

∂m

∂Xi

)
· (25)

A perturbative solution of the Hamilton equa-
tions (3, 4) for free boundary conditions yields a depen-
dence of m(r) on the acceleration of the vortex which was
confirmed by computer simulations. For a circular system
and small distance of the vortex from its center (R/L � 1)
Â is antisymmetric and its only component A ∼ L2.
The general solution of equation (24) indeed describes the
slow gyrotropic rotation of the vortex with the frequency
ω0 ∼ 1/L2 and the high-frequency cycloidal oscillations
with the doublet ω1,2 and its mean value ω̄ ∼ 1/L.

However, the splitting ∆ω � 2 ln(L/rv)/L2 is larger
than the value 4/L2 from the simulations. More impor-
tantly, as ∆ω ∼ M/A from equation (24), this would
imply a constant mass in contrast to the logarithmic
L-dependence in equation (22). For increasing R/L the
discrepancies become larger, and for R/L → 1 the vortex
mass, calculated from (24) using our new simulation data,
would even become negative.

Apart from these discrepancies, the phenomenological
equation (24) does not provide a physical explanation for
the cycloidal oscillations. Such an explanation is the aim
of our paper.

3 Computer simulations of the vortex motion

To answer the above questions we first list and discuss in
detail the results of numerical simulations of the vortex
motion, which extend earlier simulations [15].

The simulation studies were performed on a square
lattice for a circular system with free boundary con-
ditions using the discrete analogue of equations (3, 4)
with δ = 0.1 (in this case rv = 1.5 and c = 0.63).
These calculations were carried out for several sizes of
the circle (L = 24, 36, 72) and different initial positions
of the vortex center (R = 4, 6, 8, 10, 12, 14, 16 for L = 24;
R = 6, 8, 10, 12, 16, 20, 24, 28 for L = 36 and R = 8, 16, 24,
32, 40, 48, 56 for L = 72). The data from the simulations
are presented in Table 1, which also contains the earlier
data for R/L < 0.3 from [15].

As the exact structure of the vortex is not known ana-
lytically even for an infinite system, in a first stage of the
simulation a static solution of the Landau-Lifshitz equa-
tions (3, 4) is found by an iteration procedure for the
vortex situated in the center of the system under consid-
eration (for details see [15]). Then this static solution is
shifted from the center of the circle to a position at the
distance R from it.

In a second stage of the simulation (for time t > 0)
the dynamical terms of the Landau-Lifshitz equations are
taken into account, and the vortex starts to move in the
CCW-direction. A typical trajectory of the vortex was pre-
sented in [16] (Fig. 4) for the system with radius L = 36
and starting coordinate R(0) = 12.

It is evident from the results of the simulation that
the motion of a single vortex with polar coordinates
R =

√
X2 + Y 2 and χ = arctan(Y/X) is a superposition

of a constant rotation along a circle R = R0, χ = ω0t
with gyrotropic frequency ω0 and additional oscillations
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Table 1. Simulation data for the vortex motion on a circle of radius L. R0 and ω0: radius and frequency of the gyrotropic
rotation; ω1 and ω2: doublet of cycloidal oscillations; ω and Ω: mean frequency and splitting of the doublet; ai and bi: radial
and azimuthal amplitudes of the oscillations.

L R0 ω0 ω1 ω2 ω Ω a1 a2 b1 b2

24 4.026 0.00184 0.04441 0.05120 0.04781 0.00339 0.08978 0.08457 0.09067 0.08954

24 6.021 0.00190 0.04447 0.05088 0.04767 0.00321 0.13713 0.12360 0.14161 0.13746

24 8.019 0.00301 0.04463 0.05049 0.04756 0.00293 0.17303 0.15186 0.18347 0.17973

24 10.064 0.00316 0.04482 0.05006 0.04744 0.00262 0.20204 0.17228 0.22211 0.21999

24 11.953 0.00237 0.04500 0.04963 0.04730 0.00231 0.21600 0.18440 0.24321 0.25436

24 13.967 0.00269 0.04525 0.04920 0.04722 0.00197 0.23212 0.17432 0.28157 0.27445

24 15.908 0.00317 0.04551 0.04876 0.04713 0.00163 0.23320 0.16789 0.31211 0.29812

36 5.802 0.000814 0.03039 0.03347 0.03193 0.00154 0.0754 0.0896 0.0754 0.0911

36 8.278 0.000823 0.03044 0.03335 0.03189 0.00145 0.143 0.116 0.0147 0.126

36 9.870 0.000852 0.03049 0.03327 0.03188 0.00139 0.144 0.130 0.152 0.146

36 12.250 0.000888 0.03055 0.03315 0.03185 0.00130 0.185 0.163 0.195 0.186

36 16.016 0.000982 0.03067 0.03293 0.03179 0.00113 0.212 0.176 0.242 0.232

36 19.980 0.001114 0.03084 0.03266 0.03175 0.00091 0.225 0.186 0.276 0.280

36 23.911 0.001414 0.03101 0.03242 0.03171 0.00071 0.225 0.170 0.318 0.316

36 27.890 0.001971 0.03122 0.03219 0.03170 0.00048 0.197 0.142 0.340 0.326

72 8 0.000201 0.01566 0.01642 0.01604 0.00038 0.0656 0.0638 0.0594 0.0602

72 16.1 0.000205 0.01566 0.01641 0.01603 0.00037 0.1224 0.1250 0.1160 0.1273

72 24.2 0.000218 0.01569 0.01635 0.01602 0.00033 0.1681 0.1591 0.1887 0.1936

72 31.9 0.000243 0.01574 0.01628 0.01601 0.00027 0.1989 0.1721 0.2460 0.2364

72 40 0.000282 0.01580 0.01622 0.01601 0.00021 0.2081 0.1837 0.2877 0.2877

72 48 0.000350 0.01584 0.01616 0.01600 0.00016 0.2015 0.1675 0.3262 0.3310

72 55.9 0.000492 0.01591 0.01611 0.01601 0.00010 0.1812 0.1486 0.3242 0.3242

with higher frequency. As one can see from Table 1 the
average radius R0 of the gyrotropic motion slightly dif-
fers from the initial radius. In [15] the dependence of the
vortex position on the time was discussed in detail and
for the initial radius R(0) = 12 the trajectory R(χ) was
plotted in a large scale in Figure 4. The radial displace-
ment r̃(t) = R(t)− R0 from the mean trajectory is in the
order of 0.3. The corresponding Fourier spectrum of r̃(t)
was shown in [15] in Figure 5. (Note that this spectrum
was evaluated in a rotating coordinate frame and so it
does not contain a peak at ω0 = 0.00089 corresponding
to the gyrotropic rotation.) This spectrum clearly shows
two dominant frequencies ω̃1 = 0.02966 and ω̃2 = 0.03404
with approximately the same amplitude, (a small addi-
tional peak at 4ω0 appears due to the nonhomogeneous
boundary condition on the circle boundary for a square
lattice.) The Fourier spectra have such a simple structure
in a wide interval of values of R/L, but for R/L → 1
where the trajectories are close to the boundary of the
circle, this structure becomes more complicated: a lot of
additional peaks appear with amplitudes in the order of
the dominant peaks and the amplitudes of these peaks
become different.

It is important to analyse the time evolution of the
spatial distribution of the magnetization m to understand
in detail the spin dynamics of the system. Typical dis-
tributions of the z-components of the spins for the case

L = 36, R = 12 were shown in Figures 1 and 2 of [15].
These figures demonstrate that the vortex moves on the
background of a spin wave and the radial coordinate R in
Figure 4 [15] oscillates in phase with the change of polarity
of the spin wave.

Now in Figure 1 we show the distribution of mag-
netization at the initial stage of motion for t = T0/360
(T0 = 2π/ω0 represents the period of the gyrotropic ro-
tation). We see that at this moment, when the vortex
starts to rotate in the CCW-direction from the position
X = −R, Y = 0, a standing coherent spin wave is formed
with maxima of the m-field of order of 0.025 at the points
x = 0, y = ±L. Later this wave oscillates with the high
frequency ω � 0.032 and slowly rotates in the opposite
CW-direction with the frequency Ω � 0.0013. (During
the time interval ∆t = T0/6 the vortex rotates by the
angle ∆χ = π/3 and the standing wave rotates by the
angle −π/2. In this period the maximum amplitudes of
the spin wave are in the order of 0.03.) Comparison of
these data with the spectrum in Figure 5 of [15] shows
that ω � (ω̃1 + ω̃2)/2 and Ω � [(ω̃2 − ω0) − (ω̃1 + ω0)]/2.
So the excited coherent spin wave is a superposition of
two modes: The first mode rotates in the CCW-direction
with frequency ω1 = ω̃1 + ω0 in the laboratory frame and
corresponds to the low-frequency peak in Figure 5 [15]
and the second mode rotates in the CW-direction with
ω2 = ω̃2 − ω0 and corresponds to the higher-frequency
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Fig. 1. Distribution of the m-components of the magnetization
for a circular system with radius L = 36 with a vortex at
distance R = 12 from the center at the time t0 = T0/360
immediately after the beginning of the motion.

peak. In the laboratory frame these dominant peaks have
the frequencies ω1 = 0.0305, ω2 = 0.0332.

In order to prove that the dominant frequencies of the
spectrum indeed correspond to spin waves, we took into
account a small damping in the Landau-Lifshitz equa-
tions (14) and checked that the amplitudes of these main
peaks decrease exponentially in time and the decrement of
their damping exactly agrees with the decrement of linear
spin waves.

The excited coherent standing spin wave can be rep-
resented approximately as

m � f(r) (B1 cos(ϕ − ω1t) + B2 cos(ϕ + ω2t)) (26)

where r =
√

x2 + y2 and ϕ = arctan(y/x) are polar coor-
dinates in space, B1 � B2 and ω1, ω2 > 0. In reality,
in the presence of a vortex the structure of these modes is
more complicated. In [7,11–14,16,25] the normal modes
of finite easy-plane ferromagnets with a vortex situated in
the center of the system were studied in detail for circular
and square systems, for different sizes and both Dirichlet
and von Neumann conditions.

The typical structure of the spectrum of these eigen-
modes and its dependence on the anisotropy parame-
ter δ is shown in Figure 2, taken and enlarged from [11].
These dependencies are depicted only for three lower
modes which are most interesting for us, namely the
modes with unit azimuthal number, i.e. with the form
m ∼ cos(±ϕ − ωt). We see that at the critical value
δc � 0.297 (where the OP-vortex structure appears) these
eigenfrequencies split into the doublets (aa′), (bb′), (cc′)...
The upper branches of these doublets (a, b, c...) have the
positive azimuthal number and the corresponding modes
rotate in the CCW-direction, the lower branches (b′, c′...)

0.0 0.5 1.0
δ

0.0

0.5

1.0

1.5

ω
c

c’

b

b’
a
a’

Fig. 2. The frequencies of the lowest azimuthal modes as a
function of the anisotropy parameter δ for a circular system
with radius L = 7.5 and free boundary conditions in the pres-
ence of a vortex in the center of the system (from [11]). The
modes (a, b′) correspond to the main doublet in the Fourier
spectrum in Figure 5 of [15].

Fig. 3. The profile of the azimuthal mode corresponding to
the a-branch of the spectrum in Figure 2.

with the negative azimuthal number correspond to modes
rotating in the CW-direction (with the exception of the
a′-mode which rotates in CCW-direction). The dominant
modes excited in the numerical simulations correspond to
the upper branch of the first doublet and the lower branch
of the second doublet (branch a has the frequency ω1

and branch b′ has the frequency ω2). The superposition
of the a and b′ branches rotates in the CW-direction be-
cause ω2 > ω1.

Outside the core of the vortex the eigenmodes of the
upper branches of the doublets differ only slightly from
the corresponding eigenmodes of a system without a vor-
tex. (See Fig. 3 where the profile of the a-mode is repre-
sented for a circular domain with radius R = 20 and free
boundaries.)

The eigenmodes of the lower branches of the doublets
differ strongly from the corresponding modes in the ab-
sence of the vortex. But in the limit of small anisotropy
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Fig. 4. The same as in Figure 3 but for the b′-branch.

(δ � 1) they change in such a way that in all the area
outside the vortex core the profiles of these modes be-
come similar to those for the upper branch of the previous
doublet. (Compare the forms of the b′-mode (Fig. 4) and
the a-mode (Fig. 3).) So outside the vortex core the dis-
tribution of the magnetization in the dominant modes is
similar to the ground mode with unit azimuthal number
in the same system without a vortex.

It was shown in [15] that the simulation data
for the time dependencies of the radial displacement
r̃(t) = R(t) − R0 and the azimuthal displacement in the
rotating frame R0χ̃(t) = R0(χ − ω0t), are described very
accurately by the ansatz

r̃(t) = a1 cos ω̃1t + a2 cos ω̃2t , (27)
R0 χ̃(t) = b1 sin ω̃1t − b2 sin ω̃2t, (28)

where ai, bi > 0.
For R0/L < 0.2 the amplitudes of the two modes

with the frequencies ω̃1 and ω̃2 are approximately equal
(a1 � a2, b1 � b2) and for this case

r̃(t) � 2a cosωt cos Ω̃t , R0χ̃(t) � 2b cosωt sin Ω̃t,
(29)

where Ω̃ = (ω̃2 − ω̃1)/2 and ω = (ω̃2 + ω̃1)/2. (Note that
the total amplitude of these oscillations is of order of 2a.)

So in the moving frame of reference the center of the
vortex oscillates with the frequency ω and the polarization
of these oscillations rotates with the small frequency Ω̃.
This character of the oscillations is evident from Figure 4
from [15].

Table 1 contains for different values of L and R0 the
observed values for the frequency ω0 of the gyrotropic ro-
tation, the dominant frequencies ω1 and ω2, their mean
frequency ω, the splitting Ω of the frequencies (all in lab-
oratory frame) and the amplitudes ai and bi of the oscil-
lations.

This table shows a good agreement between the data
for ω0 and the formula (17). The mean frequency ω of

0.0 0.5 1.0
R/L

0.00

0.10
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Fig. 5. The mean amplitudes a, b of the radial and az-
imuthal oscillations (lower and upper branch, resp.) as func-
tions of R/L. The numerical results for L = 24 (�), 36 (♦)
and 72 (�) in comparison with analytical results (solid lines),
reduced by a factor of 1.03.

the two dominant modes depends very slightly on R0

and agrees with good accuracy with the analytical result
for the ground rotating eigenmode in a circular system
without a vortex. The solution of equations (7, 8) for this
mode is well known:

m = mmax
J1 (rω/c)
J1 (z1)

sin(ϕ − ωt), (30)

where mmax is the amplitude of the wave, J1(ρ) is
a Bessel function and for free boundary conditions
dJ1(ρ)/dρ|ρ=z1 = 0 where z1 � 1.8412. The eigenfre-
quency of this mode is ω = (cz1/L). For L = 24, 36, 72
we have a set of frequencies ω = 0.0485; 0.0323; 0.0162
very close to the data for ω in Table 1.

The frequency Ω of the slow rotation of the excited
stationary wave depends strongly on the ratio R/L and
the system size L. For small radii there is a good agree-
ment with the analytical result obtained in [16]:

Ω(R → 0) � π

4L2

z1Y
′
1(z1)

J ′′
1 (z1)

� 2
L2

, (31)

where Y is a Neumann function.
But in the region R/L > 0.2 the analytical for-

mula (31) and the data from the simulation disagree: Ω
decreases with increasing R/L and can be approximated
by the formula Ω � 2.6(1 − R/L)/L2.

Table 1 shows that the amplitudes of the cycloidal
oscillations are small (mmax for L = 36, R = 12 is
of order of 0.3) and grow with the radius of the gy-
rotropic rotation. The amplitudes b1 and b2 of the az-
imuthal oscillations are equal with good accuracy for all
0 < R < L. The difference between the amplitudes a1

and a2 of the radial oscillations grows with the ratio R/L:
(a1 − a2)/a1 � (R/L)/ ln(L/rv).

The mean amplitude b = (b1 + b2)/2 of the azimuthal
oscillations grows linearly with R/L in a wide interval,
only for R/L > 0.5 the increase becomes smaller (see up-
per branch in Fig. 5). The mean amplitude a of the radial
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oscillations grows linearly for small R/L, at R/L � 0.55
a maximum is seen (lower branch in Fig. 5).

4 Theoretical description of the cycloidal
vortex motion

For an explanation of the main features of the complicated
vortex dynamics we propose the following simple scenario:

When the vortex is shifted from the center of the cir-
cle to the position with R at t = 0, the magnetization
distribution in the system does not agree with the equi-
librium distribution of a static vortex with the center at R.
It follows from equation (19) that in this case the vortex
has the extra potential energy δE = −π ln(1 − R2/L2)/2
which is about 0.185 for L = 36 and R = 12. (The total
vortex energy is in the order of 10 in this case). At the
moment t = 0 from which the dynamical Landau-Lifshitz
equations are solved, the vortex starts to move and the
magnetization distribution in it adapts to the solution of
these equations. For t > 0 the motion of the vortex mainly
consists of a gyrotropic rotation with average radius R0,
velocity V and frequency ω0 given by formula (17). The
structure of the moving vortex is slightly modified pro-
portionally to the small velocity V , as follows from equa-
tion (12), and it appears a small total magnetization of the
vortex in the order of πr2

vRV (� 0.75 for R = 12, L = 36).
But the additional kinetic energy of the gyrotropic motion
is very small: for our parameters it is in the order of 0.001
(so the kinematic effects are small, too). Thus the main
part of the extra vortex energy is emitted into the volume
as a spin wave. This process is much quicker than the
vortex motion. The excited spin wave reaches the bound-
ary of the system after the time interval δt � cL � 22
(close to the time t0 = T0/360 corresponding to Fig. 1)
and forms the coherent eigenmode shown in this figure.

From the comparison of (9) and (13) it is evident
that the discrepancy between the initial (9) and equilib-
rium (13) distributions of the magnetization for small radii
R � L has the form ∆Φ � −(R/L2)r sin ϕ, i.e. the form of
the first azimuthal mode of the spin waves (cf. (30)). But
from Figures 3, 4 we see that in the presence of a vortex
two internal modes of the system have such a symmetry.
So to fulfil the boundary conditions the extra energy of the
vortex must transform into the energy of this spin wave
doublet. As the frequency of the gyrotropic motion is ex-
tremely small (ω0 � 1/L2) only the lowest eigenmodes of
the spin system can be effectively excited.

The rotating vortex has an additional angular momen-
tum in comparison with the static vortex at the same dis-
tance from the center. But the total angular momentum
of the system is an integral of motion. Thus the additional
momentum of the moving vortex must be compensated by
a shift of the radius of the gyrotropic rotation (which we
see in Fig. 4 of [15]) and by the angular momentum of
the excited spin waves. As the average radial position R0

of the vortex grows very slowly the angular momentum of
the spin waves in the direction opposite to the vortex rota-
tion must arise during the initial stage of the process. The

lowest eigenmode has radial symmetry and zero angular
momentum and so the next higher modes with unit az-
imuthal number must be excited (this is in an agreement
with the above estimation of the exited field). For small δ
the lowest azimuthal mode (a′ in Fig. 2) transforms into
the CCW rotation of the vortex.

Therefore this wave cannot compensate the angular
momentum of the vortex. The azimuthal mode rotating
in the CW-direction (mode b′ in Fig. 2) has a momentum
opposite to the azimuthal vortex momentum and can in
principle compensate it. But the average angular momen-
tum of the vortex in the situation under consideration is of
order of 2.7 (see the calculation below) while the momen-
tum of the b′-mode is smaller by a factor of two. Moreover,
as we see from the simulation that a coherent superposi-
tion of two spin waves (29) arises, with the same ampli-
tudes and a total angular momentum of order of 0.5. The
superposition of the principal azimuthal modes (a and b′)
rotates in CW-direction because ω2 > ω1, and compen-
sates a part of the total angular momentum of the vortex.
We see this slow CW-rotation of the coherent spin wave
in our simulations.

The excited wave rotates independently from the vor-
tex in the first approximation and we can neglect an in-
fluence of the vortex on its dynamics. But the influence of
these eigenmodes on the vortex leads to oscillations of its
center in the periodical time-dependent field of the spin
wave.

We cannot solve analytically the initial value problem
for the beginning of the vortex motion and the excitation
of coherent modes. So we shall use the conservation laws of
the system under consideration. Unfortunately there ex-
ist only three such integrals of motion: total z-component
of the magnetization, total angular momentum and en-
ergy, while the solution for the excited system depends on
a much larger number of parameters such as the ampli-
tudes of the excited eigenmodes, the shift of the average
vortex orbit, the background of magnetization and so on.
That is why we use the results of our analysis of the nu-
merical simulations and assume that only two dominant
low-frequency CW- and CCW-modes with unit azimuthal
numbers and approximately equal amplitudes are excited
in the system.

First of all we must calculate the initial energy of the
vortex and the energies of the two excited spin waves.
A vortex situated in the center of the circle has a sim-
ple configuration with Φ = arctan(y/x), and its energy
from (19) is π ln(L/rv). At the moment t = 0 the vortex
was shifted by the distance R from the center, i.e. the
field distribution has the form Φ = arctan((y + R)/x).
It is easy to show that the energy of this configuration
E = π ln(L/rv)+ π/2 ln(1−R2/L2) is larger than the en-
ergy of the equilibrium static vortex (19) by the amount

δEV = −π

2
ln

(
1 − R2

L2

)
· (32)

As the z-component of the magnetization field in the
static vortex decreases exponentially with the distance
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from its center, the total z−component of the vortex due
to its core is of order of µ = πr2

v and the background field
is absent: m0 = 0.

The angular momentum of a static vortex follows
from (59)

KV = π(L2 − R2), (33)

and strongly depends on its position on the circle.
At the moment t = 0 when the vortex starts to move its

simple initial configuration of the magnetization relaxes to
the rotating vortex solution (13) with χ = ω0t and nonzero
m-field: m � Φ̇/c2. As follows from (57, 62) the kinetic
energy of a moving vortex Ec � πr2

vR2/2L4(ln(L/rv) +
5/4) is extremely small (Ec ∼ 0.001 for L = 36 and R =
12). So all the extra energy δEV (∼ 0.185 forL = 36, R =
12) transforms into the energy of spin waves.

In the moving vortex a nonzero magnetization appears
additionally to the one of the vortex core. From (60) the
total additional z-component is ∆µ � πr2

vR2/(L2 − R2).
As µ is an integral of motion a uniform background with

m0 =
r2
vR2

L2(L2 − R2)
(34)

(� 0.0002) must be excited in the system. (The corre-
sponding frequency of a uniform spin rotation is very
small: � 0.0001.)

The total angular momentum of the vortex moving
with average radius R0 on this background is (see (64))

KV = R0V πr2
v

(
ln

L

rv
+

ε2 + 2ε − 1
2ε2

ln(1 − ε)

− 1
2ε

+ 1 − ε

)
+ π

(
L2 − R2

0

)
, (35)

where ε = R2
0/L2. We took into account that the position

of the vortex can shift and the radius R0 of the gyrotropic
rotation can differ from the initial radius R.

For not very large radius of rotation the change in
vortex angular momentum is

δKV = πr2
v

R2
0

L2

(
ln

(
L

rv

)
+

1
4

)
− π

(
R2

0 − R2
)
. (36)

The first term in (36) is approximately equal to 3 for
L = 36, R = 12. So the shift of the radius considerably
changes the angular momentum.

Now let us calculate the integrals of motion for the
excited principal modes. In the absence of the vortex the
superposition of these CW- and CCW-modes in a circular
sample with free boundaries has the form:

Φsw(r, t) = A1J1

(rω

c

)
sin(−ϕ + ωt)

+ A2J1

(rω

c

)
sin(ϕ + ωt), (37)

with the same frequency ω = ω = cz1/L.

As was shown in [16] in the presence of a vortex situ-
ated in the center of a circle the solution (37) is modified
outside of the vortex core in the following manner:

Φsw(r, t) = A2

(
J1

(rω2

c

)
+

π

4
rvω2

c
Y1

(rω2

c

))
× sin(ϕ + ω2t) + A1

(
J1

(rω1

c

)
− π

4
rvω1

c
Y1

(rω1

c

))
× sin(−ϕ + ω1t), (38)

where ω1 = ω−Ω � ω−2/L2 and ω2 = ω+Ω � ω+2/L2.
From equations (37, 38) it is evident that the total

magnetization µ of the spin waves is zero and we must
calculate only their energy and angular momentum. In the
first approximation we shall neglect the small additional
terms with Neumann functions Y1 in (38) which are pro-
portional to the small values ω1,2 ∼ 1/L � 1 and result
from the existence of the vortex in the system. Neverthe-
less we take into account that in the presence of the vortex
the frequencies ω1 and ω2 in the arguments of the Bessel
functions and in the trigonometric functions are not equal
and depend on the rotation radius R0. We use the relation
J1(rω1,2/c) � J1(ρ) ∓ (rΩ/c) dJ1(ρ)/dρ with ρ = rω/c,
take into account the relation (8) for small amplitude spin
waves and obtain the energy of each principal mode in (38)

Ei
sw =

π

2
A2

i (z
2
1 − 1)J2

1 (z1) � 1.27A2
i . (39)

In this approximation the angular momentum (58) of
each rotating spin wave in (38) can be reduced to the form

Ki
sw = − ωi

c2

∫
dv

(
∂Φi

sw

∂ϕ

)2

· (40)

Substitution of the solution (38) into this formula gives

K1,2
sw � A2

1,2πr2
v

(
± β

L

rv
− α (ΩL2)

)
+ O(Ω2)

� A2
1,2

(
±0.6L − 3.5

)
, (41)

where α = J2
1 (z1)(z2

1+1)/2z2
1 � 0.22 and β = J2

1 (z1)(z2
1−

1)/2z2
1 � 0.12. (We took into account that ΩL2 � 2 for

small R0/L as was shown in [16].)
As it follows from the numerical data the amplitudes

of the principal modes are closely allied A1 � A2 = A and
so the sum of their energies is Esw � 2.54A2. This must be
equal to the extra energy of the starting vortex (32). This
comparison gives us the dependence of the amplitudes of
the excited coherent spin waves on the radius of gyrotropic
rotation and the size of the system:

A =
R0

L

1
J1(z1)

√
2(z2

1 − 1)
� 0.786

R0

L
· (42)

The amplitude of the Φ- field in the coherent spin
wave is equal to Φmax = 2AJ1(z1) � 1.16A � 0.91R0/L
and this result is in good agreement with the above es-
timate for ∆Φmax � (rR0/L2)|r=R0 . The amplitude of
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the m-field is mmax = 2AJ1(z1)z1/cL � 3.4A/L. For
R = 12, L = 36 we have A � 0.262, Φmax � 0.3, and
mmax � 0.025, and the last result agrees with good ac-
curacy with the value observed in the simulations (see
Fig. 1.)

In the above simple approach it is easy to calculate
the total angular momentum of the superposition of sta-
tionary coherent spin waves (see Appendix B). In the first
approximation in the small parameter 1/L � 1 the angu-
lar momentum has the form

Ksw = −A2 2πr2
v (αΩL2 − β

L

rv

A1 − A2

A

− β cos 2ωt). (43)

We see that due to the interference of the principal
modes the angular momentum Ksw oscillates in time and
therefore such a superposition of spin waves can exist only
in the presence of another excitation with oscillating an-
gular momentum (in our case an oscillating vortex).

It follows from the numerical data (see Tab. 1) that
the difference in the amplitudes of the principal modes
grows with the ratio R0/L and slightly depends on the
system size L: (A1 − A2)/A1 � (R0/L)/ ln(L/rv). The
average value of the angular momentum of the coherent
spin waves for small distance of the vortex from the center
(when ΩL2 � 2) is

Ksw(R0 � L) � − A2

(
7 − 1.2

R0

ln(L/rv)

)
· (44)

For L = 36, R = 12 using (42) we have Ksw � −0.165.
So the total angular momentum of the principal modes is
much smaller than the first term in (36) for the change of
the vortex momentum. Then it follows from the condition
δK = 0 and from the formulae (36) that the shift of the
vortex radius of motion must be in the order of

∆R

R0
� r2

v

2L2

(
ln

L

rv
+

1
4

)
· (45)

Unfortunately the spread of the numerical data for this
quantity is rather large (see Tab. 1) and it even changes
its sign. But the average value of ∆R/R0 ∼ 10−2 has the
same order as in equation (45).

The final expression for the excited principal modes in
the first approximation has the following simple form

Φsw(r, t) � R0

L

1
z1

√
β

J1

( r

L
z1

)
sinωt cos(ϕ + Ωt),

(46)

msw(r, t) � R0

cL2

1√
β

J1

( r

L
z1

)
cosωt cos(ϕ + Ωt).

(47)

These expressions give the dependencies of the charac-
teristics of the coherent spin wave on the parameters R0

and L.
At last we must use these dependencies and find the

relation between the amplitude of these excited modes and

the amplitude of the cycloidal secondary vortex motion in
the spin wave field. To do this we use equation (16), insert
the solution (46) and take into account the field of the
antivortex. In our simplest approximation the “external”
Φ-field has the form

Φex � R0

L

1
z1

√
β

J1

(
R0

L
z1

)
sin ωt cos(χ + Ωt)

+ ΦAV (r = R0, ϕ = χ), (48)

where the last term ΦAV = −arctan((y−Y )/(x−X)) cor-
responds to the field of the image antivortex. Substituting
this function into (16) we rewrite the system of equations
for the cycloidal vortex oscillations

dR

dt
� R

L2

1√
β

(
dJ1(ρ)

dρ

)
r=R

sin ωt cos(χ + Ωt), (49)

R
dχ

dt
� − 1

L

1
z1

√
β

J1(ρ)|r=R sin ωt sin(χ + Ωt) + ω0R,

(50)

where R and χ are the polar coordinates of the vortex
and ρ = rz1/L. This is a complicated system of nonlinear
time-dependent equations. But for the vortex oscillating
with a small amplitude we can put

R = R + ar, χ = ω0t + aχ/R , (51)

where ar, aχ � R, and replace χ by ω0t and R by R on the
righthand sides of this system, (the new veriables ar and
aχ correspond to r̃(t) and R0χ̃(t) in the phenomenological
formula (29)). Then equations (49, 50) can be trivially
integrated and the result has the simple form

ar � 1
z1c

√
β

R

L

(
dJ1(ζ)

dζ

)
cosωt cos Ω̃t , (52)

aχ � 1
z2
1c
√

β
J1(ζ) cosωt sin Ω̃t, (53)

where ζ = z1R/L and Ω̃ = Ω+ω0 is the difference between
the dominant frequencies in the moving frame of reference.

The solution (52, 53) indeed corresponds to the cy-
cloidal oscillations of the vortex with the frequency ω,
whose polarization rotates slowly with the frequency Ω̃
in accordance with the phenomenological formula (29). It
follows from this solution that for small values of R/L the
amplitudes of the radial and azimuthal oscillations are ap-
proximately equal, linearly proportional to the radius of
the gyrotropic rotation of the vortex and depend mainly
on the ratio R/L. For small values of this parameter

a(max)
r � a(max)

χ � 1
2z1c

√
β

R

L
� 1.24

R

L
· (54)

This result is in excellent agreement with the simula-
tion data (see Tab. 1): from (54) it follows that the am-
plitudes of the principal modes are a = b � 0.62(R/L)
(where a = a

(max)
r /2, b = a

(max)
χ /2) which are close to

the mean amplitudes a � b � 0.6R/L from Table 1.
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For larger R/L , a and b behave differently as functions
of R/L, see Figure 5. This behavior is well explained by
the functions ζdJ1(ζ)/dζ and J1(ζ) in equations (52, 53).
In fact, the agreement between these theoretical results
and the simulation data is nearly perfect, as can be seen
in Figure 5; only a factor of 1.03 was used for adjustment.

This agreement between the analytical and numerical
results in the full interval of the values of R and L con-
firms our scenario for the origin of the cycloidal vortex
oscillations.

5 Conclusion

In the frame of a 2D Heisenberg model with easy-plane
symmetry we have studied the dynamics of a non-planar
vortex on a circular system of radius L. Our simulations
(numerical solution of the Landau-Lifshitz equations for
the dynamics of spins on a square lattice with circular free
boundaries) show the following main features of the vor-
tex dynamics: In addition to the azimuthal rotation with
radius R and angular velocity ω0 = 1/(L2 − R2) the vor-
tex performs small cycloidal oscillations around the mean
trajectory showing a frequency doublet ω1,2, with mean
value ω ∼ 1/L and splitting ∆ω � 4/L2. For small R/L
the amplitudes of the radial and azimuthal componenets of
the cycloidal oscillations both increase linearly with R/L,
while they differ for large R/L, see Figure 5.

In contrast to an earlier phenomenological theory [15],
which allowed to calculate ω1,2 for small R/L (but not
the amplitudes), we have now given a physical explana-
tion by the following scenario: The initial condition in a
static vortex. When this vortex starts its motion under
the influence of the Coulomb force from an image vortex
and the gyrotropic force G × dR/dt it must excite two
azimuthal magnon modes with nearly equal frequencies
and amplitudes in order to compensate for its own angu-
lar momentum related to its azimuthal rotation. In the
field of the oscillating and slowly rotating quasi-standing
coherent spin wave the vortex performs its cysloidal os-
cillations around its mean trajectory. The amplitudes of
these oscillations agree with an accuracy of about 3% with
the simulation data for all R/L, which confirms the above
scenario.

Finally we would like to stress that cycloidal vortex
oscillations with two nearby frequencies are olso observed
in simulations for other system shapes, e.g. for square sys-
tems, i.e. a circular system was only chosen here in order
to allow analytical calculations.

One of us (A.S.K.) thanks the University of Bayreuth for
kind hospitality and acknowledges finansial support from the
Graduiertenkolleg “Nichtlineare Spektroskopie und Dynamik”.

Appendix A

To explain the vortex dynamics we must calculate the in-
tegrals of motion, first of all the energy and angular mo-
mentum, which depend on the effective mass (21) of the

vortex. All the calculations were performed for a small
easy-plane anisotropy (δ = 0.1). But even in this range
the radius of the vortex core is very small (rv = 1.5) and
contains only a few spins. So we shall not discuss the con-
tribution of the core to the integral characteristics of the
vortex. For a moving vortex in the region outside the core
the distribution of the fields has the form

m = m0(r) + V m1(r), Φ = ϕ + V Φ1(r), (55)

where m0 ∝ Φ1 ∝ exp(−r/rv) and m1 ∝ rv/r (r and
ϕ represent the polar coordinates in the frame connected
with the vortex center). So the second term in (21) is
exponentially small and can be omitted. Due to the small
m-components we can use the relation (8) and rewrite the
components of the mass tensor as

Mij =
∫

dv

c2

∂Φ

∂Xi

∂Φ

∂Xj
, M

(0)
ij =

∫
dv

c2

∂Φ

∂xi

∂Φ

∂xj
· (56)

taking into account (Mij) or not (M (0)
ij ) the boundary

conditions as seen from (13).
Note that in this approximation an equation similar

to (20) with Mii from (56) can be derived from the ansatz
S = S(r,R(t)) in a Lagrangian approach.

The energy (2) for the area out of the core can be
simplified and expressed in terms of the mass components

E � 1
2

∫
dv
(
(∇Φ)2 + c2m2

)
� c2M (0) +

1
2
MxxẊ2 +

1
2
MyyẎ

2, (57)

where M (0) = (M (0)
xx + M

(0)
yy )/2.

The second integral of motion is the total angular mo-
mentum of the magnetization field [24]:

K =
∫

dv(1 − m)
[
r ×∇Φ

]
. (58)

For the stationary gyrotropic rotation of a vortex the
solution (13) has the form Φ = χ + Φ̃(r, R, ϕ − χ) and
a travelling wave ansatz is valid for the angle variable.
So from (13) we have ∂Φ/∂t = −χ̇(∂Φ/∂ϕ − 1) and for
the position of the vortex (X = R, Y = 0) the following
relation is valid: ∂Φ/∂ϕ−1 = −R ∂Φ/∂Y . Then it is easy
to show that

K = R2χ̇
1
c2

∫
dv

(
∂Φ

∂Y

)2

+ χ̇r2
v

∫
dv

(
∂Φ

∂ϕ
− 1

)

+ (1 − m0)
∫

dv
∂Φ

∂ϕ

= R2χ̇

(
Mϕϕ − µ

)
+ (1 − m0)π

(
L2 − R2

)
. (59)

In the chosen position of the vortex Myy = Mϕϕ. Besides
we assumed that there exists a nonzero spatially uniform
background with the magnetization m0. The first term
in (59) corresponds to the kinematic angular momentum
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of the moving vortex and the second term to the angular
momentum of a static vortex in the finite system.

In (59) the quantity µ represents the total z-
component of the magnetization which is conserved in the
uniaxial ferromagnet. For a static vortex only its interior
part gives the contribution µ0 � πr2

v to the magnetization
which is the “self angular momentum” of the vortex (its
total spin). But in a moving vortex the additional term
δm = Φ̇/c2 appears and the total magnetization is

µ =
∫

dvm = µ0 + µ0RV, (60)

where R and V are radius and velocity of the gyrotropic
vortex motion.

We see that the mass M in the energy (57) and the
angular momentum (59) plays the role of a usual particle
mass.

For the calculation of the vortex mass we use the static
solution (13) for a vortex on a circle with free boundary
conditions and obtain the following results

M (0)
rr,ϕϕ = πr2

v

(
ln

L

rv
+ ln(1 − ε) ± 1

2
ε

)
, (61)

Mrr,ϕϕ = πr2
v

(
ln

L

rv
+

ε2 ∓ 2ε − 1
2ε2

ln(1 − ε)

− 1 − 2ε

2ε
∓ 1

)
, (62)

where ε = (R/L)2.
So the rest energy of the vortex c2M (0) and its angular

momentum are

E = π ln
L2 − R2

Lrv
, (63)

and

K = RV πr2
v

(
ln

L2 − R2

Lrv
− (1 − ε)2

2ε2
ln(1 − ε)

+1 − 1
2ε

)
+ (1 − m0)π

(
L2 − R2

)
. (64)

We can use the formulas (61–64) only in the region
L − R > rv in which the omitted terms are negligibly
small. So these formulas are accurate for all values of R
in the interval 0 < R < L − rv. In the limit R → L all
the expressions (61–64) logarithmically diverge due to the
terms ln(1 − ε) and the masses must be calculated with
better accuracy. For small distance of the vortex from the
boundary of the system (for a small value of the parameter
(L − R)/rv ≡ l/rv) the boundary may be considered as
a straight line along which the vortex moves. In this case
the integrals in (56) can be expanded in a power series in

l/rv � 1 and the first terms of this expansion for the area
outside the vortex core have the form

Mout � πr2
v

((
l

rv

)2

+
1
3

(
l

rv

)6

+ ...

)

� π(L − R)2, (65)

and tend to zero near the boundary. In this region the core
of the vortex gives the main contribution to its mass. But
inside the vortex m � 1 and ∂Φ/∂Ẏ ∼ (y − Y ) (see [6])
(vortex moves along the surface in y-direction). So the
contribution of the interior of the vortex to its mass is
of order of the volume of the core: πr2

v/2 + 2rv(L − R).
Combining this estimate for L − R < rv with the formu-
las (61–62) for L−R > rv we can propose approximate ex-
pressions for the effective vortex masses valid for all radii
of vortex rotation in which the logarithmic terms ln(1−ε)
must be replaced by ln(1− ε + rv/L). In the limit R → L
the amplitude of the m-field tends to zero and the vortex
transforms into a small amplitude surface soliton with a
stationary profile and a finite mass in the order of r2

v. This
solution was discussed in [26] (see also [27]).

Appendix B

In the simple case of a superposition of two principal
modes with the same amplitude (A1 = A2 = A) the solu-
tion (38) has the form

Φsw(r, t) = A(P sin ω̄t cos(ϕ + Ωt)

+ Q cos ω̄t sin(ϕ + Ωt)), (66)

where in the first approximation in the small parameter Ω

P � J1(ρ) +
πΩ

4c2

(
Y1(ρ) + ρ

dY1(ρ)
dρ

)
+ O(Ω2), (67)

Q � πω̄

4c2
Y1(ρ) +

Ω

ω̄
ρ

dJ1(ρ)
dρ

+ O(Ω2), (68)

and ρ = rz1/L.
The expression for the angular momentum of a coher-

ent spin wave can be rewritten as

Ksw = −2πA2

c2

∫ L

0

rdr
(
Ω(P 2 + Q2) + 2ω̄PQ

)

+
2πA2

c2

∫ L

0

rdrΩ(P 2 − Q2) cos 2ω̄t, (69)

and in the first approximation we have

Ksw � −2πA2L2

c2z2
1

∫ z1

0

ρdρ((J2
1 (ρ) + 2ρJ1(ρ)

dJ1

dρ

+
πω̄2

2c2Ω
J1Y1) − cos 2ω̄t J2

1 ) + O(Ω2). (70)
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From the expression in the first brackets in (70) it is
evident that the shifts of the frequencies ωi from their
average value ω̄ in the arguments of the Bessel functions
and the additional terms with Neumann functions in (38)
give a contribution in Ksw of the same order as the main
terms in (38). After performing the integrals in (70) we
obtain the final result (43) if the last terms with Neumann
functions in (38) are disregarded. The parameter α must
be replaced by

α̃ =
z2
1 + 1
2z2

1

J2
1 (z1) +

z2
1 − 1
2z2

1

J1(z1)Y1(z1) � 0.11, (71)

if these terms are taken into account.
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